As angles A, B and C are in A.P (Arithmetic Progression) therefore 2B = A + C, this is just a general rule for Arithmetic Progression series. Let’s now move onto simplifying right…

Read moreSimplifying left hand side of equation (SinA + Sin3A + Sin5A + Sin7A)/(CosA + Cos3A + Cos5A + Cos7A) = Tan4A Using formulasSinC + SinD = 2 Sin(C + D)/2 Cos(C – D)/2…

Read moreFor downloading above PDF click here – Download Above PDF Let’s simplify left hand side of this equation (Cos2A Cos3A – Cos2A Cos7A + CosA Cos10A)/(Sin4A Sin3A – Sin2A Sin5A + Sin4A Sin7A)…

Read moreLet’s simplify left hand side of this equation (Cos8A Cos5A – Cos12A Cos9A)/(Sin8A Cos5A + Cos12A Sin9A) = Tan4A Multiplying and dividing by 2 Using formulas2 CosA CosB = Cos(A + B) +…

Read moreLet’s prove that SinA + Sin3A + Sin5A + Sin7A = 4 CosA Cos2A Sin4A Let’s simplify left hand side of this equationSinA + Sin3A + Sin5A + Sin7A (SinA + Sin3A) +…

Read moreSimplifying Left Hand Side Cot4A (Sin5A + Sin3A) Cot4A (Sin5A + Sin3A) Using formulaSinC + SinD = 2 Sin(C + D)/2 Cos(C – D)/2 ReplacingC = 5AD = 3A (C + D)/2 =…

Read moreIn this article, we will discuss how to prove that (Sin3A + SinA) SinA + (Cos3A – CosA) CosA = 0 Let’s simplify left hand side of this equation(Sin3A + SinA) SinA +…

Read moreLet’s simplify (Sin5A + Sin3A) and (Cos5A + Cos3A) individually and then divide Simplifying (Sin5A + Sin3A) Using formula SinC + SinD = 2 Sin(C + D)/2 Cos(C – D)/2 ReplacingC = 5AD…

Read moreLet’s simplify left hand side of this equation (Cos9A – Cos5A)/(Sin17A – Sin3A) = – Sin2A/Cos10A Simplifying Cos9A – Cos5A Using formulas CosC – CosD = 2 Sin(C + D)/2 Sin(D – C)/2…

Read moreCos7A + Cos5A can be simplified using CosC + CosD = 2 Cos(C + D)/2 Cos(C – D)/2 Sin7A – Sin5A can be simplified using SinC – SinD = 2 Cos(C + D)/2…

Read more