SI Units Used For Studying “Statistical Thermodynamics”

Physical QuantityPhysical Quantity SymbolMathematical FormulaSI Unit of Physical Quantity
Avogadro ConstantL, N_{\mathrm{A}}L=N / n\mathrm{mol}^{-1}
Boltzmann Constantk, k_{\mathrm{B}}\mathrm{J} \mathrm{K}^{-1}
Molar Gas ConstantRR=L k\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}
Molecular Position Vectorr(x, y, z)\mathrm{m}
Molecular Momentum Vectorp\left(p_{x}, p_{y}, p_{z}\right)p=m c\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}
Veloctiy Distribution Functionf\left(c_{x}\right)f=\left(\frac{m}{2 \pi k T}\right)^{1 / 2} \exp \left(-\frac{m c_{x}^{2}}{2 k T}\right)\mathrm{m}^{-1} \mathrm{~s}
Speed Distribution FunctionF(c)F=4 \pi c^{2}\left(\frac{m}{2 \pi k T}\right)^{3 / 2} \exp \left(-\frac{m c^{2}}{2 k T}\right)\mathrm{m}^{-1} \mathrm{~s}
Average Speed\bar{c}, \bar{u}, \bar{v}
\langle c\rangle,\langle u\rangle,\langle v\rangle
\bar{c}=\int c F(c) \mathrm{d} c\mathrm{ms}^{-1}
Density of States\rho(E)\rho(E)=\mathrm{d} W(E) / \mathrm{d} E\mathrm{J}^{-1}
Reciprocal Energy Parameter to Replace Temperature\beta\beta=1 / k T\mathrm{J}^{-1}
Characteristic Temperature\Theta, \theta\mathrm{K}
Statistical EntropySS=-k \sum_{i} p_{i} \ln p_{i}\mathrm{J} \mathrm{K}^{-1}e

Recent Posts