SI Units Used in “Chemical Thermodynamics”

Chemical Thermodynamics is the study of how heat and work relate to each other. This relationship between work and heat can be measured using four particular quantities – Internal Energy, Enthalpy, Entropy, and Gibbs Free Energy.

In this article, I’ve put together SI Units that are used for studying “Chemical Thermodynamics“. I hope that this article is useful for you.

Physical QuantityPhysical Quantity SymbolMathematical FormulaSI Unit of Physical Quantity
HeatQ, qJ
WorkW, wJ
Internal EnergyU\mathrm{d} U=\mathrm{d} Q+\mathrm{d} WJ
EnthalpyHH=U+p VJ
Thermdynamic TemperatureT,(\Theta)\mathrm{K}
International TemperatureT_{90}\mathrm{K}
Celsius Temperature\theta, t\theta /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15{ }^{\circ} \mathrm{C}
EntropyS\mathrm{d} S=\mathrm{d} Q_{\mathrm{rev}} / T\mathrm{J} \mathrm{K}^{-1}
Helmholtz Energy or FunctionA, FA=U-T SJ
Gibbs Energy or FunctionGG=H-T SJ
Massieu FunctionJJ=-A / T\mathrm{J} \mathrm{K}^{-1}
Planck FunctionYY=-G / T\mathrm{J} \mathrm{K}^{-1}
Pressure Coefficient\beta\beta=(\partial p / \partial T)_{V}\mathrm{Pa} \mathrm{K}^{-1}
Relative Pressure Coefficient\alpha_{p}\alpha_{p}=(1 / p)(\partial p / \partial T)_{V}\mathrm{K}^{-1}
Isothermal Compressibility\kappa_{T}\kappa_{T}=-(1 / V)(\partial V / \partial p)_{T}\mathrm{Pa}^{-1}
Isentropic Compressibility\kappa_{S}\kappa_{S}=-(1 / V)(\partial V / \partial p)_{S}\mathrm{Pa}^{-1}
Linear Expansion Coefficient\alpha_{l}\alpha_{l}=(1 / l)(\partial l / \partial T)\mathrm{K}^{-1}
Cubic Expansion Coefficient\alpha, \alpha_{V}, \gamma\alpha=(1 / V)(\partial V / \partial T)_{p}\mathrm{K}^{-1}
Heat Capactiy at Constant PressureC_{p}C_{p}=(\partial H / \partial T)_{p}\mathrm{J} \mathrm{K}^{-1}
Heat Capacity at Constant VolumeC_{V}C_{V}=(\partial U / \partial T)_{V}\mathrm{J} \mathrm{K}^{-1}
Ration of Heat Capacities\gamma,(\kappa)\gamma=C_{p} / C_{V}Unitless
Joule-Thomson Coefficient\mu, \mu_{\mathrm{JT}}\mu=(\partial T / \partial p)_{H}\mathrm{K} \mathrm{Pa}^{-1}
Van Der Waals Coefficientsa
b
\left(p+a / V_{\mathrm{m}}^{2}\right)\left(V_{\mathrm{m}}-b\right)=R T\mathrm{J} \mathrm{m}^{3} \mathrm{~mol}^{-2}
Compression Factor or Compressibility FactorZZ=p V_{\mathrm{m}} / R TUnitless
Standard Chemical Potential\mu^{\ominus}, \mu^{\circ}\mathrm{J} \mathrm{mol}^{-1}
Standard Partial Molar EnthalpyH_{\mathrm{B}}{ }^{\theta}H_{\mathrm{B}}^{\theta}=\mu_{\mathrm{B}}{ }^{\theta}+T S_{\mathrm{B}}{ }^{\circ}\mathrm{J} \mathrm{mol}^{-1}
Standard Partial Molar EntropyS_{\mathrm{B}}{ }^{\theta}S_{\mathrm{B}}{ }^{\theta}=-\left(\partial \mu_{\mathrm{B}}{ }^{\theta} / \partial T\right)_{p}\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}
Standard Reaction Gibbs Energy\Delta_{\mathrm{r}} G^{\theta}\Delta_{\mathrm{r}} G^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} \mu_{\mathrm{B}}^{\theta}\mathrm{J} \mathrm{mol}^{-1}
Standard Reaction Enthalpy\Delta_{\mathrm{r}} H^{\theta}\Delta_{\mathrm{r}} H^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} H_{\mathrm{B}}^{\diamond}\mathrm{J} \mathrm{mol}^{-1}
Standard Reaction Entropy\Delta_{\mathrm{r}} S^{\ominus}\Delta_{\mathrm{r}} S^{\ominus}=\sum_{\mathrm{B}} \nu_{\mathrm{B}} S_{\mathrm{B}}^{\theta}\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}
Fugacity Coefficient\phi\phi_{\mathrm{B}}=f_{\mathrm{B}} / p_{\mathrm{B}}Unitless

Recent Posts