SI Units Used In “ElectroChemistry”

ElectroChemistry is a branch of Chemistry that deals with relation between chemical, physical phenomena. In order to understand the relation between chemical and physical phenomena, many physical quantities are used. In this article, I have put together a table containing SI Units in ElectroChemistry. I hope that this article is useful for you.

Physical QuantityPhysical Quantity SymbolMathematical FormulaSI Unit of Physical Quantity
Elementary Chargee\mathrm{C}
Faraday ConstantFF=e N_{\mathrm{A}}\mathrm{C} \mathrm{mol}^{-1}
Charge Number on an Ionzz_{\mathrm{B}}=Q_{\mathrm{B}} / eUnitless
pHpH\mathrm{pH}=-\lg \left(a_{\mathrm{H}^{+}}\right)Unitless
Outer Electric Potential\psi\mathrm{V}
Surface Electric Potential\chi\mathrm{V}
Inner Electric Potential\phi\phi=\chi+\psi\mathrm{V}
Volta Potential Difference\Delta \psi\Delta_{\alpha}^{\beta} \psi=\psi^{\beta}-\psi^{\alpha}\mathrm{V}
Galvani Potential Difference\Delta \phi\Delta_{\alpha}^{\beta} \phi=\phi^{\beta}-\phi^{\alpha}\mathrm{V}
Surface Charge Density\sigma\sigma=Q_{\mathrm{s}} / A\mathrm{C} \mathrm{m}^{-2}
Electrode PotentialE, U\mathrm{V}
Standard Electrode PotentialE^{\vartheta}E^{\ominus}=-\Delta_{\mathrm{r}} G^{\theta} / z F\mathrm{V}
Equilibrium Electrode PotentialE_{\mathrm{eq}}E_{\mathrm{eq}}=E^{\ominus}-(R T / z F) \sum_{i} \nu_{i} \ln a_{i}\mathrm{V}
Formal PotentialE^{\ominus \prime}E_{\mathrm{eq}}=E^{\ominus \prime}-(R T / z F) \sum_{i} \nu_{i} \ln \left(c_{i} / c^{\vartheta}\right)\mathrm{V}
Electric CurrentII=\mathrm{d} Q / \mathrm{d} t\mathrm{A}
Electric Current Densityjj=I / A\mathrm{A} \mathrm{m}^{-2}
Faradaic CurrentI_{\mathrm{F}}I_{\mathrm{F}}=I_{\mathrm{c}}+I_{\mathrm{a}}\mathrm{A}
Transfer Coefficient\alpha, \alpha_{\mathrm{c}}\alpha_{\mathrm{c}}=-(R T / n F) \mathrm{d}\left(\ln k_{\mathrm{c}}\right) / \mathrm{d} EUnitless
Overpotential\eta, E_{\eta}\eta=E-E_{\mathrm{eq}}\mathrm{V}
Mass Transfer Coefficientk_{\mathrm{d}}k_{\mathrm{d}, \mathrm{B}}=\left|\nu_{B}\right| I_{\mathrm{lim}, \mathrm{B}} / n F c A\mathrm{m} \mathrm{s}^{-1}
Electrokinetic Potential\zeta\mathrm{V}
Conductivity\kappa,(\sigma)j=\kappa \boldsymbol{E}\mathrm{S} \mathrm{m}^{-1}
Electric Mobilityu,(m)u_{\mathrm{B}}=\left|v_{\mathrm{B}}\right| /|\boldsymbol{E}|\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}
Ionic Conductivity\lambda\lambda_{\mathrm{B}}=\left|z_{\mathrm{B}}\right| F u_{\mathrm{B}}\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}
Transport Numbertt_{\mathrm{B}}=\lambda_{\mathrm{B}} c_{\mathrm{B}} / \sum_{i} \lambda_{i} c_{i}=j_{\mathrm{B}} / \sum_{i} j_{i}Unitless

Leave a Comment

Your email address will not be published. Required fields are marked *